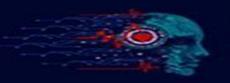


Self Supervised Learning in Medical Images

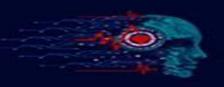
Dr. Jalil Ghavidel

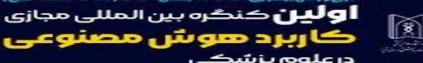


اولین کنگرہ ہین المللی مجازی **کاربرد ھو ش مصنوعی**

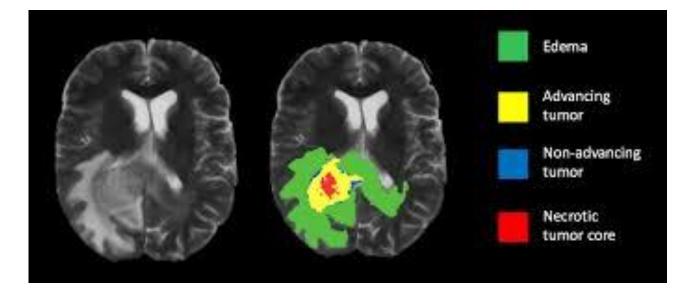
• Growing volume of medical imaging data

• Millions of medical images are generated each year

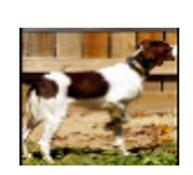

تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (ه.۱۳ ، مه:۹۰ صبح

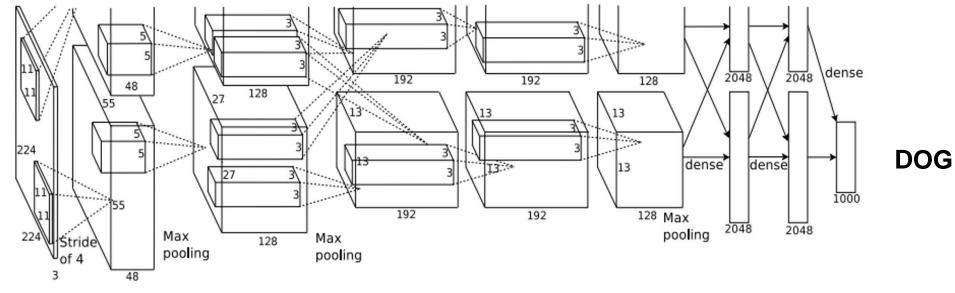

اولین کنگرہ بین المللی مجاز کاربرد صوش مصنوعے

Scarcity of expert annotations


• Less than 0.01% of the generated data is annotated

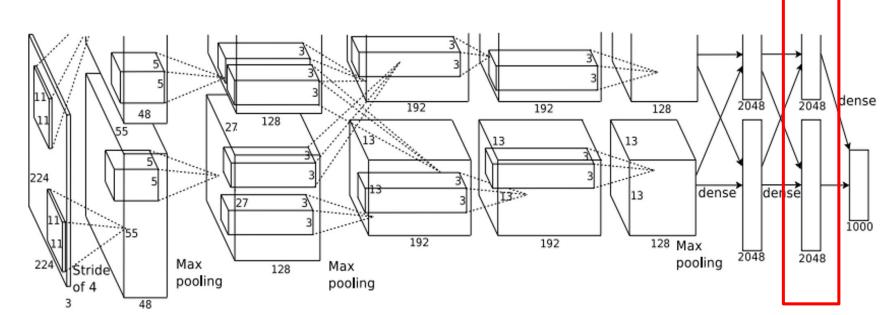
- High costs and time involved in manual labeling
- Demand for improved diagnostic accuracy



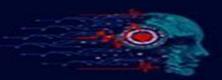

تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (۲۰۰۰ میچ) تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (۲۰۰۰ میچ)



Supervised Learning

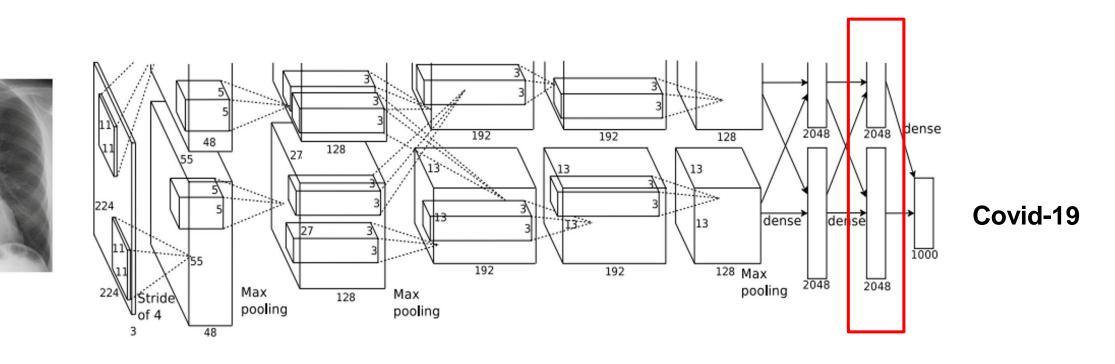

تاریخ واس بیکانی ۲۰۰۰ تا ۱۷ بستن ۲۰۰۰ (۱۰۰۰ معداد معد) اولین کنگره بین المللی مجازی کاربرد هوش مصنوعی

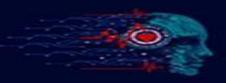
در علوم پزشکی



Supervised Learning

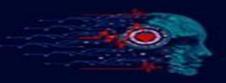
تاریخوامان بیگانی ۱۷ ما ۱۷ بهمن ۲۰۰۳ (۱۰۰۰ ۲۰۰۰ میچ) **اولین** کنگره بین المللی مجازی


درعلوم پزشکی


4096-dim vector

رد هوش مصنوع

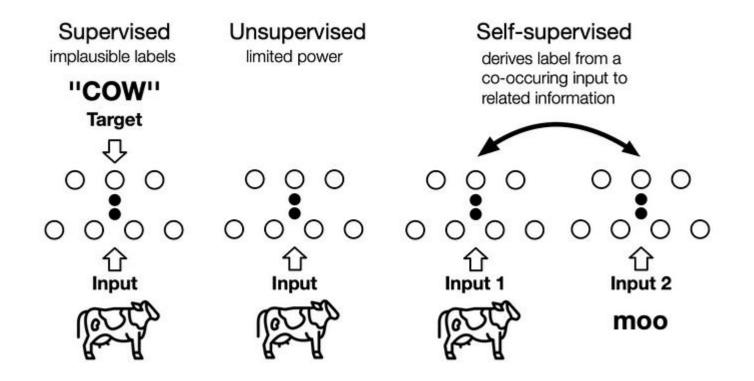
Transfer Learning



اولین کنگرہ بین المللی مجازی <mark>کا ربرد صو ش مصنوعی</mark> درعلوم پزشکی

The Challenge with Supervised Learning

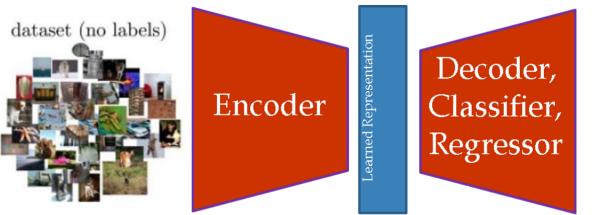
- Requires large labeled datasets
 - ImageNet with 14M images took 22 human years.
- Expert annotation bottleneck
- Overfitting to limited data
- Difficulty in capturing subtle features
 - Data Imbalance

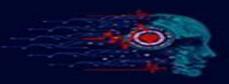


اولین کنگرہ بین المللی مجازی <mark>کاربرد صوبتی مصنوعی</mark> دیولوہ بنتیک

Self-Supervised Learning (SSL)

- Definition: Learning representations from unlabeled data
- Self-generated supervision signals (pretext tasks)

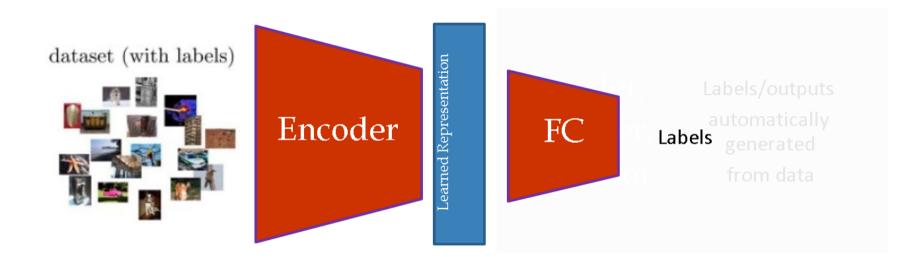


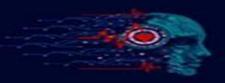


What is "self" supervision?

- Obtain "labels" from the data itself by using a "semi-automatic" process
- Predict part of the data from other parts

Labels/outputs automatically generated from data



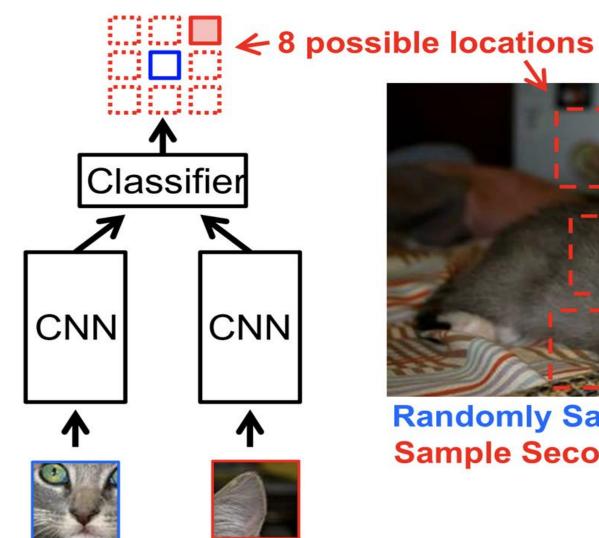


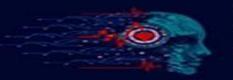
What is "self" supervision?

- Obtain "labels" from the data itself by using a "semi-automatic" process
- Predict part of the data from other parts

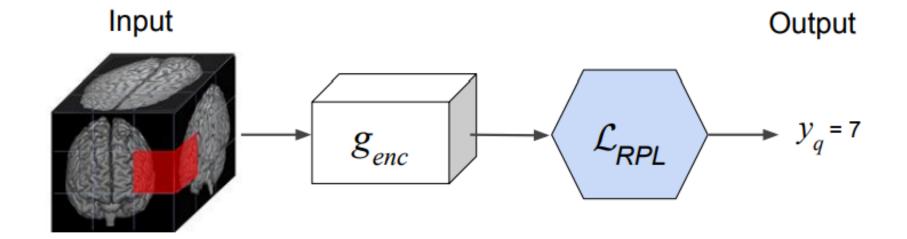
ولین کنگرہ بین المللی مجازی **کاربرد ھو ش مصنوعی**

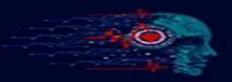
Why SSL is Ideal for Medical Imaging


- Abundance of unlabeled medical images
- SSL pretraining improves downstream task performance
- Reduces reliance on costly manual annotations

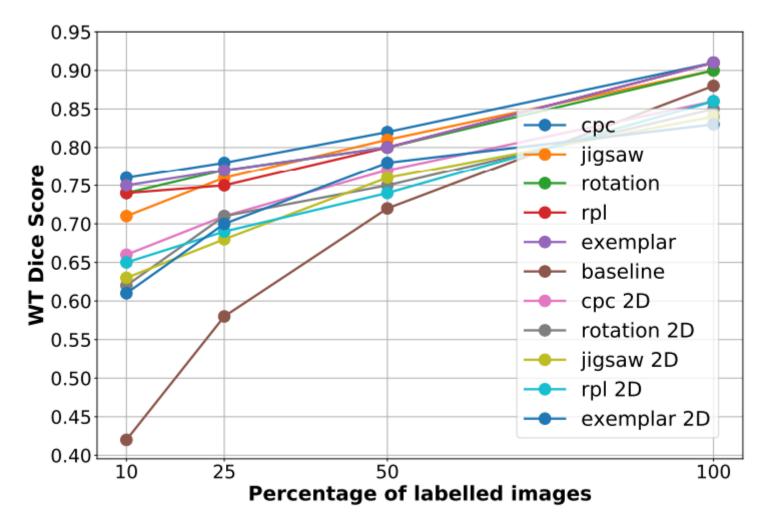


Relative Position of patches


Randomly Sample Patch Sample Second Patch


اریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (هه: ۱۷ . هه: ۹۰ صبح

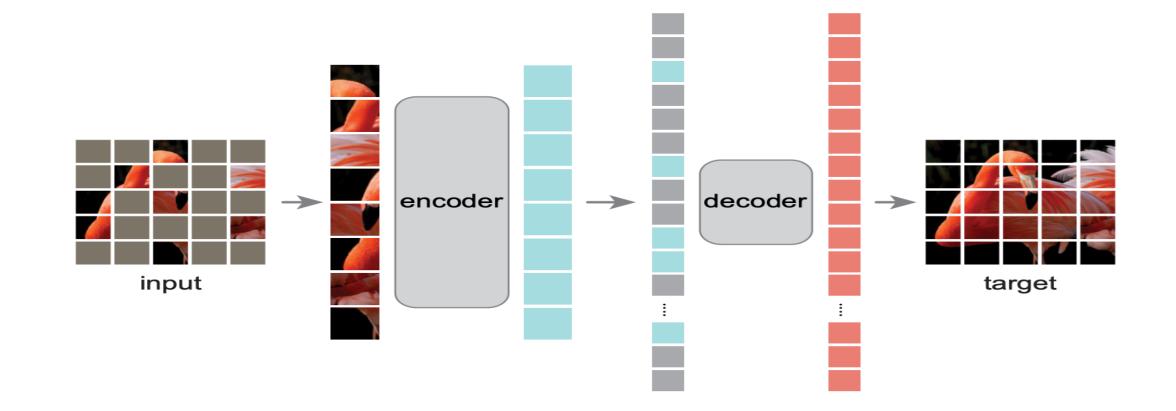
اولین کنگره بین المللی مجازی کاربرد هوش مصنوعی در علوم بزشکہ

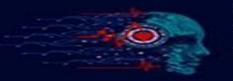

Taleb, Aiham, et al. "3d self-supervised methods for medical imaging." *Advances in neural information processing systems* 33 (2020): 18158-18172.

تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (هم: ۲ . هم: ۹۰ صبح)

اولین کنگره بین المللی مجازی <mark>کاربرد صوش مصنوعی</mark> درعلوم پزشکی

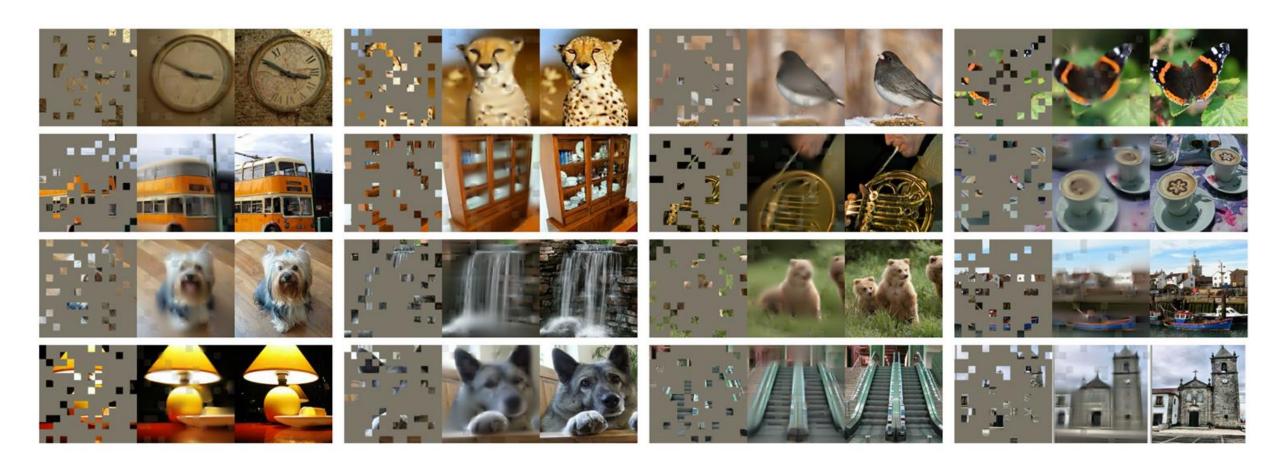
Taleb, Aiham, et al. "3d self-supervised methods for medical imaging." *Advances in neural information processing systems* 33 (2020): 18158-18172.

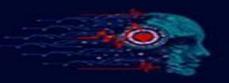



ولین کنگرہ بین المللی مجازی کاربرد صوفر ، مصنوعہ ،

در علوم پزشکی

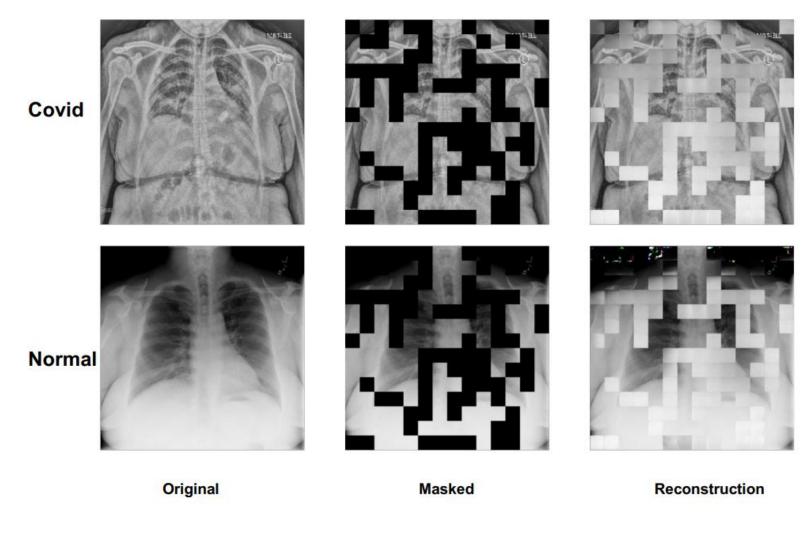
Masked Auto Encoder (MAE)

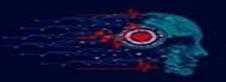




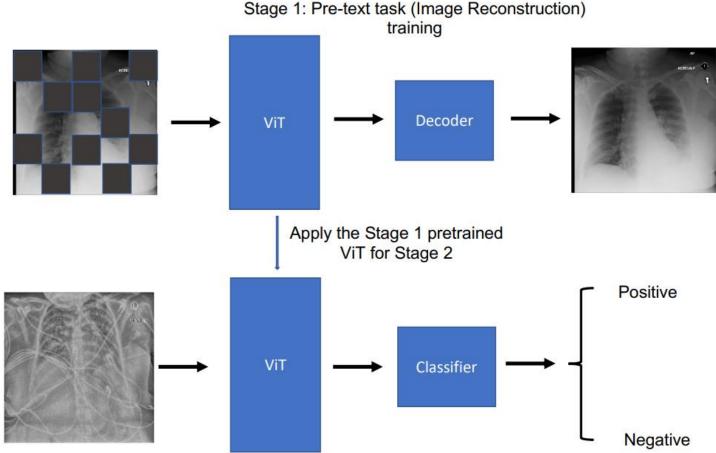
تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (مه: ۲ . ۲۰۰۰ میچ)

اولین کنگرہ بین المللی مجازی <mark>کاربرد صوش مصنوعی</mark> در علوم پزشکی

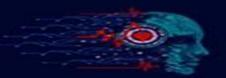



تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (هه: ۲ هم: ۹ صبح)

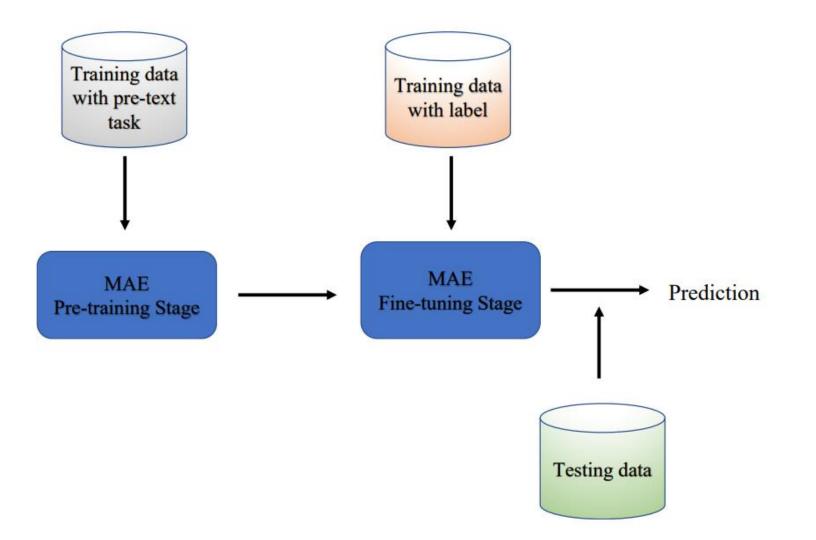
اولین کنگرہ بین المللی مجازی <mark>کاربرد ھو ش مصنوعی</mark> درعلوم پزشکی

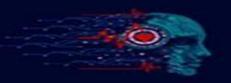

Xing, Xin, et al. "Self-supervised learning application on COVID-19 chest X-ray image classification using masked autoencoder." *Bioengineering* 10.8 (2023): 901.

لین کنگرہ بین المللی مجازی ایر جھوش مصنوعے


בו בלבסת ע

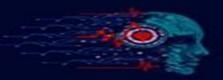
Stage 2: Covid Positive/Negative task training


Xing, Xin, et al. "Self-supervised learning application on COVID-19 chest X-ray image classification using masked autoencoder." *Bioengineering* 10.8 (2023): 901.


تاریخ وزمان برگزاری-۱۳ تا ۱۷ بهمن ۳۰۰۳ (۲۰۰۰ ه. ۲۰۰۰ میچ

اولین کنگره بین المللی مجازی <mark>کاربرد صوش مصنوعی</mark> درعلوم پزشکی

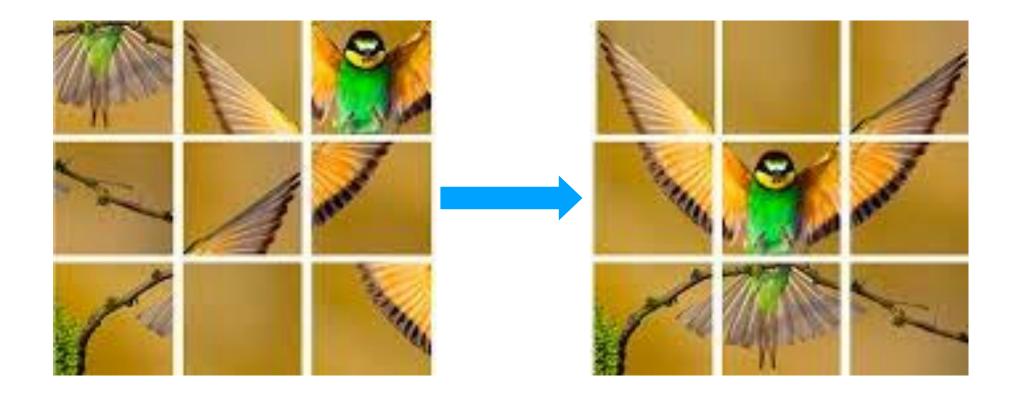
Xing, Xin, et al. "Self-supervised learning application on COVID-19 chest X-ray image classification using masked autoencoder." *Bioengineering* 10.8 (2023): 901.

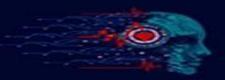

lloll. und 8 COULD . III בו שבסח י

Туре	Acc	AUC	F1	Precision	Recall	AP
DenseNet121	0.9775	0.9970	0.9771	0.9948	0.96	0.9750
ResNet50	0.9650	0.9969	0.9641	0.9894	0.94	0.9601
ViT-scratch	0.7075	0.7808	0.7082	0.7065	0.7100	0.6466
ViT-pretrain	0.9350	0.9783	0.9340	0.9484	0.9200	0.9125
ViT-MAE	0.9850	0.9957	0.9850	0.9950	0.9850	0.9859

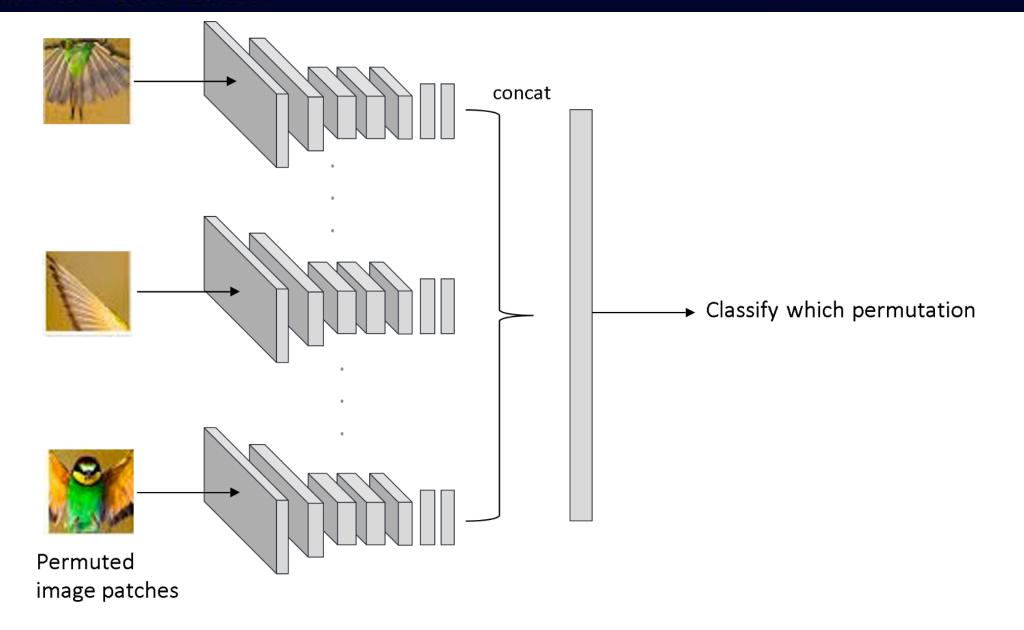
ر مجازی

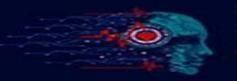
Xing, Xin, et al. "Self-supervised learning application on COVID-19 chest X-ray image classification using masked autoencoder." Bioengineering 10.8 (2023): 901.



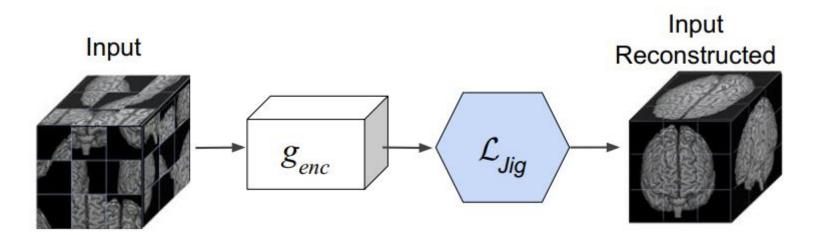

تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۳ (۱۰۰۰ ۵۰۰۹۰ صبح)

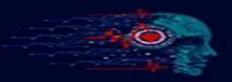
Jigsaw Puzzles



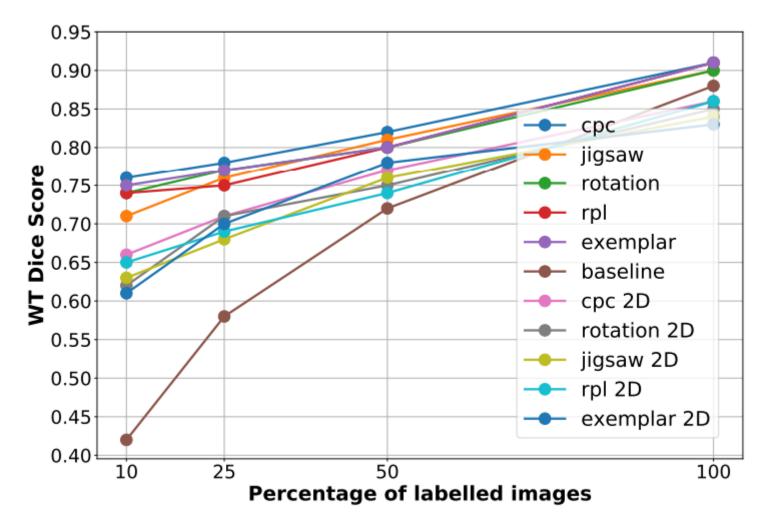

تا ١٢ يعمن ٣٥٦ (٥٠٠٩، ٥٠٠٩ معد) تاريح وزمان بركزتر

و بين الملل ی مجازی COUDD . W در علوم پزشک




تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (هو:۱۷ . ۱۳۰۰ صبح)

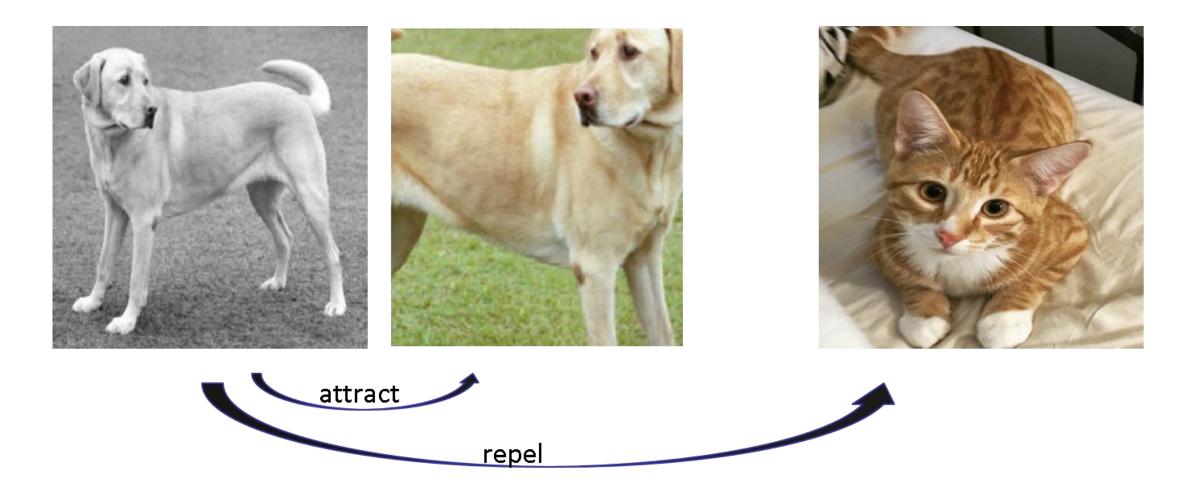
اولین کنگرہ بین المللی مجازی کاربرد صوش مصنوعی درعلوم پزشکی


Taleb, Aiham, et al. "3d self-supervised methods for medical imaging." *Advances in neural information processing systems* 33 (2020): 18158-18172.

تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۰۳ (هه: ۲ . هه: ۹۰ صح)

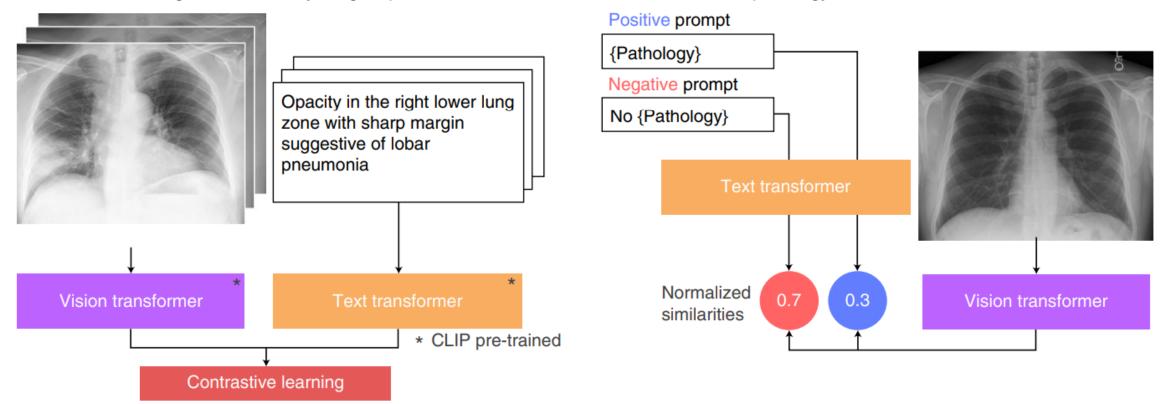
اولین کنگرہ بین المللی مجازی <mark>کاربرد صوش مصنوعی</mark> درعلوم پزشکی

Taleb, Aiham, et al. "3d self-supervised methods for medical imaging." *Advances in neural information processing systems* 33 (2020): 18158-18172.

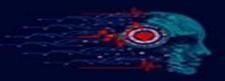


تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۲۰۳۲ (۱۰۰۰ میچ)

Contrastive


واماریکانی ۲۰ مالا بعمن ۲۰۵۳ (۱۹۰۷ معداد معد و**لین** کنگرہ بین المللی مجازی <mark>کا ربر د صوش مصنوعی</mark>

b CheXzero zero-shot pathology classification



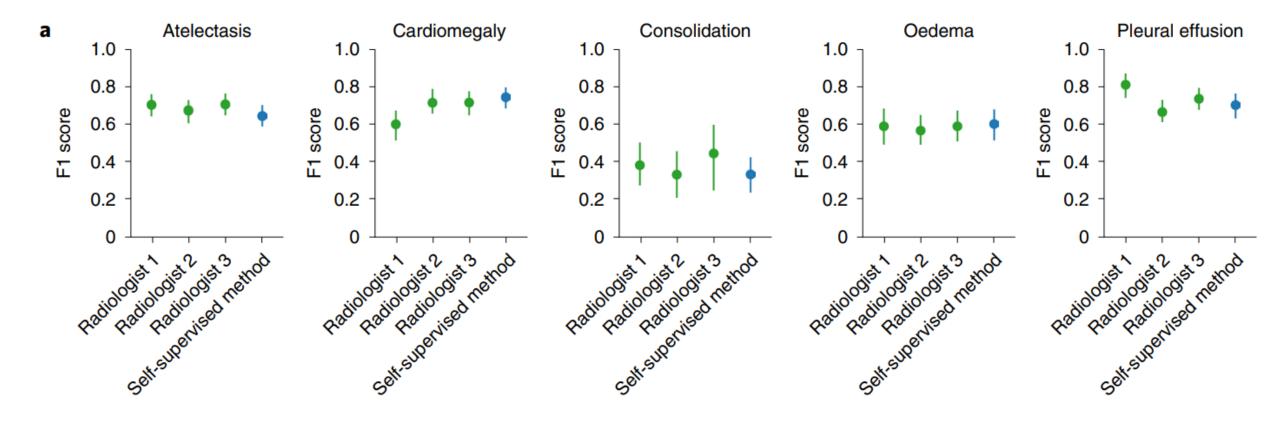
Contrastive Language-Image Pre-training

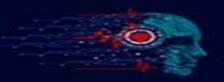
a CheXzero training with chest X-ray image report

Tiu, Ekin, et al. "Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning." *Nature Biomedical Engineering* 6.12 (2022): 1399-1406.

الجوان بيگاري ۲۰ ما ۲۷ بعمن ۲۰۰۷ (۱۰۰۷ معه) معان اولين كنگره بين المللي مجازي كاربرد هوش مصنوعي

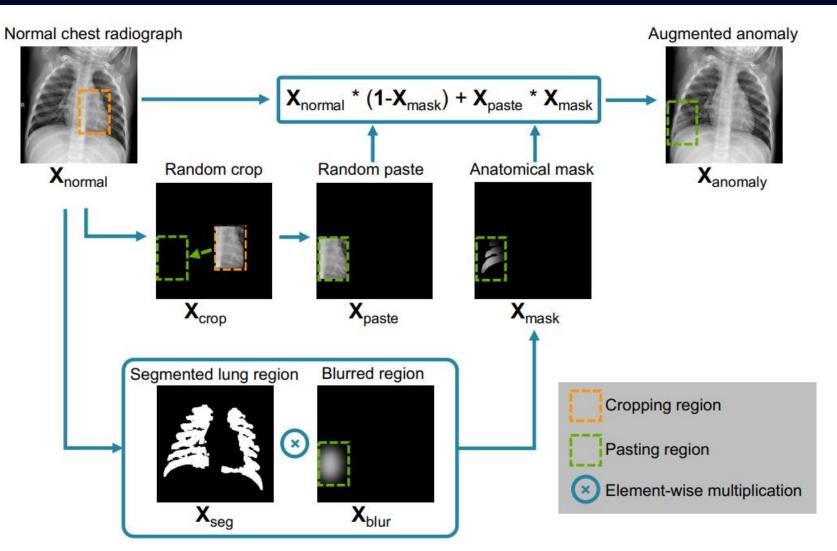
درعلوم پزشکی


Model	Mean AUC	
DAM	0.931	
DenseNet-121	0.902	
GLoRIAª	0.534	
ConVIRT- ResNet-50—1%	0.870	
ConVIRT- ResNet-50—10%	0.881	
ConVIRT-ResNet-50-100%	0.881	
ConVIRT-ViT—1% ^ь	0.725	
ConVIRT-ViT—10% ^b	0.809	
ConVIRT-ViT—100% ^b	0.856	
MedAug—1%	0.810	
MoCo-CXR—1%	0.802	
MoCo-CXR—10%	0.850	
MoCo-CXR-100%	0.884	/
CheXzero-0%	0 889	K-ray images
	DenseNet-121 GLoRIA ^a ConVIRT- ResNet-50—1% ConVIRT- ResNet-50—10% ConVIRT-ResNet-50—100% ConVIRT-VIT—1% ^b ConVIRT-ViT—10% ^b ConVIRT-ViT—100% ^b MedAug—1% MoCo-CXR—10% MoCo-CXR—10% MoCo-CXR—10%	DAM 0.931 DenseNet-121 0.902 GLoRIA ^a 0.534 ConVIRT- ResNet-50—1% 0.870 ConVIRT- ResNet-50—10% 0.881 ConVIRT-ResNet-50—10% 0.881 ConVIRT-ResNet-50—100% 0.881 ConVIRT-ViT—1% ^b 0.725 ConVIRT-ViT—10% ^b 0.809 ConVIRT-ViT—100% ^b 0.856 MedAug—1% 0.810 MoCo-CXR—1% 0.850 MoCo-CXR—10% 0.884


تاریخ وزمان برگزاری:۱۳ تا ۱۷ بهمن ۲۰۰۳ (۲۰۰۰ یا ۲۰۰۰ میچ

اولین کنگرہ بین المللی مجاز; <mark>کاربرد صوش مصنوعی</mark> درعلوم پزشکی

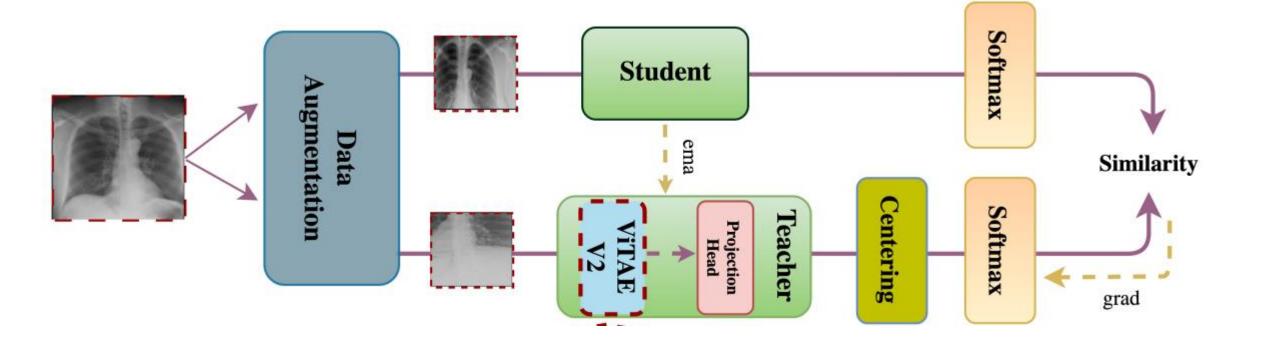
Tiu, Ekin, et al. "Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning." *Nature Biomedical Engineering* 6.12 (2022): 1399-1406.



ولین کنگرہ بین المللی مجازی کاربر جھو ش مصنوعہ

درعلوم پزشک

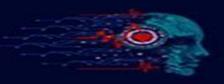
(and effert, Pere) For (none IV U IP);


Sato, Junya, et al. "Anatomy-aware self-supervised learning for anomaly detection in chest radiographs." *Iscience* 26.7 (2023).



تاریخ وزمان برگزاری-۱۳ تا ۱۷ بهمن ۳۰۳ (ه⊷۲ . ۱۹۰۰ میچ)

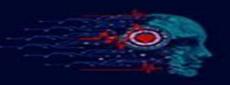
اولین کنگره بین المللی مجازی <mark>کاربرد هو ش مصنوعی</mark> درعلوم پزشکی

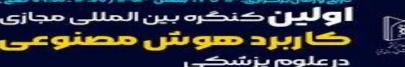

تاریخ وزمان برگزاری:™ تا ۱۷ بعمن ™ه™ (مه:۳ .مه:۹ه صبح)

اولین کنگره بین المللی مجازی <mark>کاربرد هو ش مصنوعی</mark> در علوم پزشکی

درعا	deserves a	20-10-209	

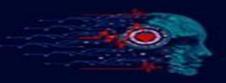
		Non-COVID-19		COVID-19		
Method	ACC	F1-Score	Precision	F1-Score	Precision	Recall
COVIDNet-CXR [29]	$67.82{\pm}6.11$	73.31±3.79	$3.36{\pm}6.15$	56.94±5.05	$81.65{\pm}6.02$	46.82±17.59
COVID-CAPS [1]	65.34±3.26	65.15±5.02	$65.62{\pm}3.98$	64.87±4.42	$66.07 {\pm} 4.49$	64.93±9.71
COVID-SDNet [26]	$76.18{\pm}2.70$	76.94±2.82	$74.74{\pm}3.89$	75.71±3.35	$78.67{\pm}4.70$	$72.59{\pm}6.77$
Panetta et. al [24]	75.11 ± 1.76	75.86±2.11	$74.75{\pm}3.61$	74.02 ± 3.15	$76.41{\pm}7.38$	$72.65{\pm}6.83$
DINO-CXR	76.47±3.53	78.03±1.96	$73.49{\pm}5.5$	72.86±7.13	79.93±1.94	66.93±11.72





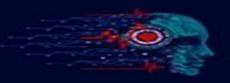
Discussion: The Future of SSL in Medicine

- Trends: increasing use of transformer-based SSL, multi-modal approaches
- Potential for personalized medicine
- Emerging research directions
 - Self-supervised reinforcement learning
 - RL agent can dynamically adjust imaging parameters (such as exposure, resolution, or even modality-specific settings) in real time



Future Research Directions

- Combining SSL with federated learning for privacy
- Multi-modal SSL: Integrating imaging with genomic and clinical data
- Adaptive SSL models that update with new data continuously
- Explainablity
- Hardware Limitations



Open Challenges and Opportunities

- Overcoming computational demands of SSL
- Lack of large, diverse datasets in medicine
- Ensuring robustness across diverse populations
- Scaling up from research to clinical practice

Final Thoughts

- SSL is transforming medical imaging by reducing annotation needs and boosting performance
- Collaboration between research and clinical practice is key
- Exciting future ahead with AI

تاریخ وزمان برگزاری: ۱۳ تا ۱۷ بهمن ۳۰۳ (هد.۲۰ ـ ۱۲۰۰ میچ)

اولین کنگرہ بین المللی مجازی <mark>کا ربرد صو ش مصنوعی</mark> در علوم پزشکی

